5–9 Factoring Pattern for ax² + bx + c

Objective: To factor general quadratic trinomials with integral coefficients.

Patterns

Factoring pattern for $ax^2 + bx + c$: (px + r)(qx + s).

Example 1	Factor $2x^2 - 3x - 9$.		
Solution			
Clue 1	Because the trinomial has a negative and the other will be positive.	constant term, one of	r and s will be negative
Clue 2	You can list the possible factors of the quadratic term, $2x^2$, and the possible factors of the constant term, -9 .	$\frac{\text{Factors of } 2x^2}{2x, x}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	Make a chart to test the possibilities to see which produces the correct linear term, $-3x$.	$\frac{\text{Possible factors}}{(2x + 1)(x - 9)}$ $(2x + 3)(x - 3)$	$\frac{\text{Linear Term}}{(-18 + 1)x = -17x}$ $(-6 + 3)x = -3x \longleftarrow$
	Since $(2x + 3)(x - 3)$ gives the correct linear term, $2x^2 - 3x - 9 =$ (2x + 3)(x - 3).	(2x + 9)(x - 1) (2x - 1)(x + 9)	(-2 + 9)x = 7x (18 - 1)x = 17x (6 - 3)x = 3x

Example 2 Factor $10x^2 - 11x + 3$.

Solution

Clue 1	Because the trinomial has a positive c and s will be negative.	constant term and a neg	gative linear term, both r
Clue 2	List the factors of the quadratic term, $10x^2$, and the negative factors of the constant term, 3.	$\frac{\text{Factors of } 10x^2}{x, 10x}$ $2x, 5x$	Factors of 3 -3, -1 -1, -3
	Test the possibilities to see which produces $-11x$. Since (2x - 1)(5x - 3) gives the correct linear term, $10x^2 - 11x + 3 =$ (2x - 1)(5x - 3).	Possible factors (x - 3)(10x - 1) (x - 1)(10x - 3) (2x - 3)(5x - 1) (2x - 1)(5x - 3)	Linear term $ \begin{array}{r} (-1 - 30)x = -31x \\ (-3 - 10)x = -13x \\ (-2 - 15)x = -17x \\ (-6 - 5)x = -11x \end{array} $

Factor. Check by multiplying the factors. If the polynomial is not factorable, write *prime*.

1. $2x^2 + 5x + 2$	2. $2n^2 - 7n + 3$	3. $5y^2 - 9y - 2$	4. $3a^2 + 7a + 2$
5. $4y^2 - 5y + 1$	6. $2a^2 + 11a + 5$	7. $5a^2 - 11a + 2$	8. $7y^2 - 9y + 2$

5–9 Factoring Pattern for $ax^2 + bx + c$ (continued)

Factor. Check by multiplying the factors. If the polynomial is not factorable, write *prime*.

9.
$$2k^2 - 5k - 1$$
10. $12k^2 - 8k + 1$ 11. $4x^2 + 17x - 15$ 12. $2a^2 + 7a + 5$ 13. $8y^2 + 6y - 9$ 14. $9x^2 + 3x - 2$ 15. $7k^2 - 11k - 6$ 16. $4u^2 - 8u - 5$

Example 3 Factor $5 - 7x - 6x^2$. **Solution** $5 - 7x - 6x^2 = -6x^2 - 7x + 5$ $= (-1)(6x^2 + 7x - 5)$ = (-1)(2x - 1)(3x + 5)Factor the resulting trinomial. = -(2x - 1)(3x + 5)Note: If you factor $5 - 7x - 6x^2$ directly, you will get (5 + 3x)(1 - 2x). Since (1 - 2x) = -(2x - 1), the two answers are equivalent.

Factor. Check by multiplying the factors. If the polynomial is not factorable, write *prime*.

17. $10 - 9y - 2y^2$	18. $10 - x - 3x^2$	19. $3 - x - 10x^2$
20. $3 - 7x - 6x^2$	21. $10 - u - 2u^2$	22. 5 + 8x - $4x^2$

Example 4Factor $5a^2 + 2ab - 7b^2$.**Solution** $5a^2 + 2ab - 7b^2 = (a \)(5a \)$ Write the factors of $5a^2$.= (a - ?)(5a + ?)Test possibilities.= (a - b)(5a + 7b)Test possibilities.Note: If you write (a + ?)(5a - ?) as the second step, you will not find a combination of factors that produces the desired linear term.

Factor. Check by multiplying the factors.

23. $x^2 - xy - 20y^2$	24. $4a^2 - 4ab - 3b^2$	25. $3a^2 - 5ab - 12b^2$
26. $5a^2 + 2ab - 7b^2$	27. $2x^2 - xy - 3y^2$	28. $8y^2 - 6yz - 9z^2$

Mixed Review Exercises

Factor.

1. $x^2 - 196$	2. $x^2 - 7x + 12$	3. $r^2 - 5r - 36$
4. $c^2 - 10c + 25$	5. $9y^2 - 121x^2$	6. $4a^2 - 25$
7. $y^2 + 13y + 36$	8. $p^2 + 14p + 49$	9. $9y^2 + 12y + 4$
10. $m^2 - m - 56$	11. $n^2 + 13n + 36$	12. $b^2 - 3b - 54$